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1. Introduction

To prevent unauthorized software from being introduced into a user’s computers or embedded devices,
there are many existing standards that require executable images to include a digital signature. The device
or OS platform validates a code image before it is executed or, in other cases, before it is downloaded and
installed on the device. Some well-known standards of signed code images include Android APK [1],
Microsoft Authenticode [2] and DOCSIS 3.1 cable modem software image signatures [3]. There are many
more standards-based and proprietary code signing formats, some of which are verified in hardware (e.g.,
in the boot ROM).

A common method of code signing is to use a command-line tool together with a private key file. The
process may be initiated by a developer who builds the software or by an automated software build
workflow. For example, Android APK can be signed with Android Studio and binaries for Microsoft
platforms can be signed with SignTool.exe. A chip vendor that supports boot code signature verification
would typically provide a device manufacturer with their own command-line tool for signing boot code
and it may be combined with their linker.

However, there are security concerns with this approach. Code signing keys may be stolen from
development environments. Some well-known incidents involving compromised code signing private
keys include those detailed in [8], [9], and [10]. For this reason, it is good practice to protect code signing
keys in hardware security modules (HSMs), which provide strong protection against disclosure of the
keys. Multiple companies offer commercial code signing tools and online services with hardware-based
protection of private keys.

While protecting the confidentiality of code signing keys addresses one aspect of security, it is also
important to ensure that only authorized individuals can exercise the protected signing key to sign code,
and can do so only according to policy. A code signing service should support permissions and access
control management so that an administrator with appropriate privileges can authorize specific individuals
or teams of individuals to use specific signing keys based on their areas of responsibility.

A software development organization that uses a third-party code signing service is, in doing so, trusting
the signing service not to sign any software using the organization’s signing key without authorization.
Note that the signing service has the technical ability to sign any code using its subscribers’ signing keys;
it is the security controls employed by the service that prevent unauthorized code signing from happening.
Code signing services can themselves be targets of, and can even fall prey to, cyberattacks. This concern
is validated by recent news of high-profile incidents in which providers of security technologies had
themselves become victims of cyberattacks, adversely affecting users of their security products [11], [12],
[13].

This paper introduces a code signing service architecture in which a subscriber’s code signing key is split
into shares controlled separately by the code signing service and the subscriber. If the subscriber’s share
is compromised, the code signing service will continue to protect the other half of the signing key and
will prevent unauthorized code to be signed. At the same time, the code signing service is prevented from
signing code in the subscriber’s name without the subscriber’s participation. If the code signing service
becomes compromised in a cyberattack, the attacker will not have possession of the subscriber’s share of
a code signing key and will still be unable to sign unauthorized software releases.
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2. Solution Outline

We will discuss applying split-key digital signature to enhance the security of code signing using an
example system. In our example system, a trusted code signing service (TCSS) operates a secure
infrastructure and performs code signing for its subscribers. A subscriber in this context may be an
organization, but it could also be an individual. A subscriber owns a public-private key pair, which is used
to sign and authenticate code (data objects) published by the subscriber. A subscriber has one or more
authorized users, who are trusted to exercise the subscriber’s private code signing key to produce code
signed by the subscriber. A trusted third party (TTP) is a party trusted by a subscriber to generate a code
signing key pair for the subscriber. Such trust may be established by technical and non-technical means,
such as contractual guarantees, certification, and audits. A TTP should be viewed as a role—trusted key
generation may not be the only service it provides.

Figure 1 illustrates the process of generating a split signing key in our example system.

In the description that follows, we use the notation E' (K, m) to denote a data object m encrypted using a
key K. Cryptographic keys are denoted using symbols of the form Kyy,, where the subscript XYZ is
meant to be suggestive of the ownership or the purpose of the key. Where there is no confusion, we do not
explicitly state which key of a key pair is used in an operation. For example, if K is a public-private key
pair, it is obvious from the context that it is the public key of K that is used in computing E(K, m). When
discussing the two shares of a split signing key (more specifically the split private key of the signing key),
we will use the convention that subscript 1 is associated with an authorized user, whereas subscript 2 is
associated with the TCSS. Where it is necessary to distinguish between the public and private keys of a
key pair K, we will use KPUB and KPR to refer to the public and private keys respectively.
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Figure 1 — Generation of a split signing key

In the key generation process shown in Figure 1, a TTP generates a code signing key Ks;qn and then
splits it into 2 shares, namely Kg;gy 1 and Kgjgn 2- Ksign 2 1 encrypted with the (public) key Krcgs of the
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TCSS. Kgqy 1s encrypted with the (public) key Kyrcpvr of the subscriber organization for secure offline
archival. The creation of this encrypted archival copy is optional, but some subscribers may find such
archiving desirable. The (complete) signing key Kg;qy is normally kept offline and not available for code
signing, to reduce the security risk of disclosure. Kg/gy 1, E(KTCSS, KSIGN,Z) and E(Kypcuive Ksien) are
returned to the client used by the authorized user.

For clarity, the keys shown in Figure 1 are color-coded as follows: the complete signing key Kg;sy is in
blue, the share Kgj¢py 1 1s in red, the share Ky , is in green, and K7 is in orange.

The TTP also provides the public key KLYE of the key Kgjqy. A code signature that is generated with

Kggn may be validated by anyone using the public key K5%5 . In the figure, KB}, is provided in the

form of a digital certificate, as is common practice, although that is not always necessary. It is assumed
that communications between TTP and the client are encrypted and authenticated, for example using
HTTPS.
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Figure 2 — Overview of two-step code signing

Once a client is provisioned with all of the above, the authorized user is able to use an established TCSS
account to initiate code signing. Figure 2 illustrates the following code signing sequence:

1) The authorized user logs into the TCSS using a client application and establishes a secure
authenticated session with the TCSS. This can be done in many different ways and
implementation details are outside the scope of this paper.

2) Using the client, the authorized user submits to the TCSS a code signing request consisting of a
preprocessed representation of the to-be-signed software image and E (KTCSS' K N,2)> which
was obtained from the TTP before. The preprocessed representation here may contain a
cryptographic digest of the software image, possibly with added padding and randomness.

3) The TCSS unwraps the encrypted Kgsy » inside an HSM. In other words, E (KTcss' KSIGN,Z) is
provided to the HSM, which decrypts it with the private key KFEL¢ to recover and use Kgjq N2
inside the HSM’s security perimeter. Kgsy 2 is then used to generate a partly-computed code

signature.
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4) The partly-computed code signature generated using Kggy » is returned to the client application.

5) The client application is now able to compute a full code signature using this partly-computed
signature and K,y 1. Details of the underlying mathematics are described in the next section.

6) Finally, the client application combines the generated code signature, the corresponding code
verification certificate, and the code image to create the final signed code image.

An advantage of this technique is that a code signing client can use a secure signing service (the TCSS)
that uses Kg¢y > only inside an HSM. The TCSS can provide other security advantages, including fine-
grained access control to different code signing keys and secure audit logging.

At the same time, the subscriber maintains control of its half of the signing key, K¢y 1, which is required
to compute a full code signature. This way, TCSS does not have to be totally trusted — it is not able to
sign code in the subscriber’s name (i.e. using the Kg;;p) Without the client’s involvement, since the TCSS
has access to neither the complete private key Kg;gy nor Kgigy 1-

The following section provides mathematical details for split-key code signing based on the RSA
cryptosystem.

3. Detailed Explanation for RSA-Based Split-Key Signing

3.1. A Quick Review of the Basic RSA Algorithm

RSA-based algorithms are commonly used for public-key encryption and digital signatures. Practical
RSA algorithms (see [7], for example) are based on, but not identical to the “textbook” RSA algorithm.
Because of security considerations, practical RSA algorithms have additional pre- and post-processing
steps. The core of these RSA-based algorithms is the modular exponentiation operation

RSA(m, e,n) = m® mod n, €))

where m is the input to be processed, n is a modulus, and e is an exponent. The same operation is used
both in the generation and verification of RSA signatures. In RSA key generation, a public-private key
pair is generated together by the key owner, or a party or mechanism trusted by the key owner. An RSA
private key (d, n) consists of a modulus n = p q, which is a product of two large primes p and g, and an
exponent d. The factorization of n (i.e., the values of p and q) is kept secret by the key owner. The public
key corresponding to (d, n) is (e, n) where e is an exponent such that (m®)4 = m (mod n). More
relevantly computation-wise, d and e satisfy

e-d=1 (mod d)(n)), 2

where ¢(n) is Euler’s totient function. In RSA, where n = pq, ¢(n) = (p — 1)(q — 1). In order for (2)
to be satisfied, both e and d must be coprime with ¢(n). The exponents e and d form a matched pair.
Note that either e or d can be decided first, with the other derived using equation (2).

In RSA signature schemes, the private key of a key pair is the signing key. The public key is the
verification key.

In practical RSA-based signature algorithms, the to-be-signed data object undergoes some preprocessing
before the RSA operation is applied. The preprocessing typically includes reducing the data object to a
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digest using a cryptographic hash function and combining the digest with deterministic and random
padding. Similarly, in signature verification, postprocessing is performed after the RSA operation. For the
purpose of split-key RSA operations, these pre- and postprocessing steps can be ignored, as they do not
involve the RSA keys, private or public.

3.2. Additive Splitting

In additive splitting of an RSA key, the private exponent d used in the signing operation is split into two
shares d, and d,, where

d; +d; = d (mod d(n)). 3)

With the split, the RSA operation m? mod n can be computed as (m®t mod n)(m% mod n) mod n.
This computation can be carried out in two parts: one by a party with knowledge of d; and another by a
party with knowledge of d,.

3.2.1. Key Generation

To make RSA signing a split-key operation, different shares of the private exponent need to be held by
different entities, so that compromising one of the entities will not give an attacker the ability to forge
signatures. A possible exception to this arrangement is when the private key is archived in heavily
protected and controlled offline storage.

There are different ways in which key generation can be accomplished. If a TTP is available, the TTP can
generate the signing key in two shares, securely deliver the shares to a TCSS and the subscriber
organization’s authorized user, and securely erase its copy afterward. Alternatively, the TCSS can
generate the signing key and securely deliver one share to the subscriber organization’s authorized user.
As in the case of key generation by a TTP, the TCSS securely erases the share of the private key for
which it is not a custodian.

Yet another possibility for key generation is for the subscriber organization to generate the key pair, split
the private key into two shares, upload one share to the TCSS and give custody of the other to an
authorized user. All copies of the complete private key are securely erased afterward.

If the subscriber organization desires to keep a complete copy of the private key in archive, that can be
achieved by encrypting a copy of the private key during key generation using an archive key belonging to
the subscriber organization.

3.2.2. Key Splitting Operation

To split a private exponent d into d, and d, additively, d; may be chosen uniformly at random from

{2, ...,d(n)-2}. d; can then be determined based on equation (3). Note that d, as the additive inverse of
d, modulo ¢ (n) always exists. Note also that because d is odd but ¢(n) = (p — 1)(q — 1) is even, one
of d; or d, is even, and therefore not a valid exponent for normal RSA operation. However, that is not a
problem because (d;, n) and (d,, n) don’t need to function like normal RSA private keys.

After the private key is split, one share, (d;, n), is given to the authorized signer. Another share, (d,,n),
is placed under the control of the TCSS. The TCSS can maintain a database of the private key shares
entrusted to it by its subscribers. Alternatively, d, can be encrypted using a key owned by the TCSS. The
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encrypted d, is given to the authorized signer along with (d;,n). When the TCSS needs to perform an
operation with d, in response to a signing request from the authorized signer, the encrypted d, can be
included in the request.

3.2.3. Signing Operation

To sign a data object m', the authorized signer first performs preprocessing on the data to produce m, a
preprocessed representation of m’, and sends it to the TCSS.

The TCSS computes a partly-computed signature by performing the RSA operation on the preprocessed
representation using its share of the subscriber’s signing key

s’ = m% mod n, 4)
which the TCSS then sends to the authorized signer.
The authorized signer computes the final signature s as
s =s'-(m9 modn) mod n. (5)
The authorized signer can verify that the signature is valid by checking that
s®*modn = m. (6)

Variation: As a variation, the RSA operations in the procedure above can be performed in the opposite
order. In that case, the authorized signer computes a partly-computed signature on the preprocessed
representation m as

s’ = m91 mod n. (7

The partly-computed signature s’, together with m, is then sent to the TCSS, which computes the final
signature s as

s =5’ (m% modn) mod n. 8)

The final signature s is sent to the authorized signer. To catch unexpected computation errors, the final
signature can be verified by the TCSS or the authorized signer, or both.

3.3. Multiplicative Splitting

In multiplicative splitting of an RSA key, the private exponent d used in the signing operation is split into
two shares d, and d,, where

d; - d; = d (mod ¢(n)). ©

d
With the split, the RSA operation m? mod n can be computed as (mdl mod n) *mod nor

(md2 mod n)d1 mod n.
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3.3.1. Key Splitting Operation

One way to find a pair of d; and d, that satisfy equation (9) is to choose a random d; from among
{3, ..., d(n) — 1} that is coprime with ¢p(n). In that case, exactly one solution exists for d,, which can be
computed using the extended Euclidean algorithm.

Using this strategy, sometimes it may take more than one try to find a d, that is coprime with ¢(n). If the
factors p and g are chosen to be safe primes (i.e. p = 2p’ + 1 and q = 2q’ + 1, for some primes p' and
q), then choosing d; at random is almost guaranteed to succeed on the first try.

3.3.2. Signing Operation

As in the case of additive splitting, to sign a data object m’, the authorized signer first preprocesses m’ to
produce a preprocessed representation m and sends it to the TCSS.

The TCSS computes a partly-computed signature s’ by performing the RSA operation on the
preprocessed representation using its share of the subscriber’s signing key d,

s’ = m% mod n, (10)
which the TCSS then sends to the authorized signer.
The authorized signer computes the final signature s as
s = (s")% mod n. (11)
The authorized signer can verify that the signature is valid by checking that
s®mod n =m. (12)

Variation: As a variation, the RSA operations in the procedure above can be performed in the opposite
order. In that case, the authorized signer computes a partly-computed signature on the preprocessed
representation m as

s’ = m% mod n. (13)
The partly-computed signature s’ is then sent to the TCSS, which computes the final signature s as
s = (s")% mod n. (14)

The final signature s is sent to the authorized signer. To catch unexpected computation errors, the final
signature can be verified by the authorized signer.

4. Experimental Results

We performed some experiments to compare standard RSA signature performance (with optimization
based on the Chinese remainder theorem (CRT)) against the performance of a two-step digital signature
approach with a private key that has been split either additively or multiplicatively, as described earlier.
The experiments were executed in the following computing environment:
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Table 1 - Benchmark Computing Environment

Operating system Windows 10 64-bit

CPU Intel® Core™ 17-10610U
RAM 32 GBytes
Cryptographic library | C# BouncyCastle

As expected, the overhead of key splitting is insignificant when compared to the time it takes to generate
a random RSA keypair.

On the other hand, there is a noticeable decrease in performance with the two-step digital signatures
because CRT-based optimizations are not available. Exploiting the CRT requires knowledge of the prime
factors of n (p and q), which would allow the full private exponent to be computed from the public
exponent, defeating the purpose of key splitting. Forgoing CRT-based optimizations, we instead used
BouncyCastle library functions based on Montgomery’s optimization for modular exponentiation.

While this two-step digital signature approach incurs a performance overhead, we consider it acceptable,
especially for signing software images, for at least the following reasons:

1. A software image is often signed after a code build, which often involves orders of magnitude
more computation than the public-key operations in code signing. This also means code signing
is not a very frequently repeated operation for the same software.

2. In code signing, a software image is first reduced to a digest using a cryptographic hash
function. The process is likely to be computationally more expensive than the public-key
operations involved.

3. Code image signing is normally not expected to be a fast real-time operation. An overhead on
the order of 1 second is generally not noticeable.

4. In our proposal, the TCSS’s share of a split private key is protected by and used only inside an
HSM. HSMs generally have hardware acceleration and very good performance for public-key
operations. An increase in execution time of a fast operation by a small multiple is not a big
overhead.
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4.1. Additive Split Benchmarks

Table 2 — Additive Split Performance Measurements

Overation Average execution time / ms
P 2048-bit 3072-bit 4096-bit
Key split 0.019 0.028 0.040
Standard CRT-based digital signature 30.479 97.410 290.090
Two-step digital signature! 207.100 703.553 2166.583
4.2. Multiplicative Split Benchmarks
Table 3 — Multiplicative Split Performance Measurements
Overation Average execution time / ms
P 2048-bit 3072-bit 4096-bit
Key split 3.239 6.179 12.678
Number of retries (for the key split) 3.306 3.276 3.561
Standard CRT-based digital signature 30.479 97.410 290.090
Two-step digital signature! 206.855 699.414 2159.088

4.3. Benchmark Results Summary

In our experiments, two-step signature computations were very slightly slower with additive key splitting
than with multiplicative splitting. This is probably because with additive splitting, an additional modular
multiplication is required. The performance difference between the two approaches is insignificant in
practical terms.

In our experiments with multiplicative key splitting, we used a simple generate-and-test strategy for
selecting d;. On average it took somewhere between 3 to 4 tries to find a d, that is relatively prime to
d(n). In any case, both multiplicative split and additive split have negligible performance overheads
when compared to the computation in RSA keypair generation.

Based on our experimental measurements, we do not see a reason to favor one key splitting approach over
the other on performance grounds. Both approaches are viable and are very similar performance-wise.
And while two-step digital signatures result in a factor of 7 increase in total execution time over
conventional CRT-based RSA signatures, that overhead is generally not significant in the context of
software image signing. Note that in the total execution time, roughly half of the computation is normally
performed by the TCSS. Between the TCSS and clients used by authorized users, only the TCSS is a
centralized resource. Therefore, for the TCSS the performance overhead is only about half of what is
suggested by the seven-fold increased execution time.

5. Security Considerations

1) As mentioned in section 4, RSA optimization based on the Chinese remainder theorem cannot be
used in this two-step digital signature approach. Doing so would defeat the goal of having two

! The measured execution time includes both the computation performed by the TCSS as well as that performed by
the authorized user.
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parties involved in the code signing process, each having access to only one share of the private
key.

2) Key splitting requires a cryptographically strong random number generator to ensure
unpredictability and that all valid choices for the combination of private key shares are nearly
equally likely. The same random number generator which qualifies for key pair generation can
also be utilized for the purpose of key splitting.

3) There are known attacks against RSA based on “small” private exponents, such as the ones in [6]
and [14]. We do not believe they are applicable to the key splitting methods we described. We
note that when a private exponent is split into two shares, they are not always valid RSA
exponents. Even when they are, no corresponding public keys are calculated or published for the
shares. Also, in the methods we described, a pair of private key shares d; and d, is chosen
uniformly at random from among all valid choices. Only a negligible fraction of such choices
have one or both of d; and d,, is less than, say, half of the bit length of the modulus.

6. Conclusions

We described an architecture for applying split-key digital signature to create a code signing service with
enhanced security and explained the advantages it offers. Two approaches of splitting RSA signing keys
are presented as examples. We anticipated that signature generation using split keys would incur
performance overhead because a commonly employed optimization technique becomes unavailable when
split keys are used. We performed experiments using a software implementation to gauge the
computational overhead. Measurements from the experiments confirmed our expectation that the
overhead is very acceptable in typical code signing usage scenarios.

7. Abbreviations and Definitions

7.1. Abbreviations

CRT Chinese remainder theorem

HSM hardware security module

RSA Rivest-Shamir-Adleman public-key cryptosystem
TCSS trusted code signing service

TTP trusted third party

7.2. Definitions

authorized signer a person authorized by a subscriber (organization) to have possession
of a share of a split signing key belonging to the subscriber and to
request signatures from a trusted code signing service
partly-computed signature an intermediate result computed using one share of a split private
signing key. It is used later in combination with a second share of the
signing key to compute a complete digital signature.

share one of the outputs from splitting a private key. Knowledge of all the
shares of a private key is equivalent to knowledge of the private key.
Knowledge of only one share does not make it feasible to generate a
valid signature.
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subscriber a party that uses a TCSS for two-step code signing. A subscriber may
be an organization but may alternatively be an individual.
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