

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 29

Enhanced Digital Signature Service Using

Split-key Signatures

A Technical Paper prepared for SCTE by

Nicol So, Sr. Staff Systems Engineer, CommScope, SCTE Member
101 Tournament Dr,
Horsham, PA 19044

nicol.so@commscope.com
+1 215 323 1149

Alexander Medvinsky, Engineering Fellow, CommScope, SCTE Member

6450 Sequence Dr.
San Diego, CA 92121

sasha.medvinsky@commscope.com
+1 858 404 2367

mailto:nicol.so@commscope.com
mailto:sasha.medvinsky@commscope.com

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 30

Table of Contents
Title Page Number
Table of Contents ___ 30

1. Introduction ___ 31
2. Solution Outline __ 32
3. Detailed Explanation for RSA-Based Split-Key Signing _________________________________ 34

3.1. A Quick Review of the Basic RSA Algorithm ___________________________________ 34
3.2. Additive Splitting ___ 35

3.2.1. Key Generation ___ 35
3.2.2. Key Splitting Operation ___ 35
3.2.3. Signing Operation ___ 36

3.3. Multiplicative Splitting ___ 36
3.3.1. Key Splitting Operation ___ 37
3.3.2. Signing Operation ___ 37

4. Experimental Results ___ 37
4.1. Additive Split Benchmarks ___ 39
4.2. Multiplicative Split Benchmarks ___ 39
4.3. Benchmark Results Summary __ 39

5. Security Considerations ___ 39
6. Conclusions ___ 40
7. Abbreviations and Definitions ___ 40

7.1. Abbreviations ___ 40
7.2. Definitions __ 40

8. Bibliography and References ___ 41

List of Figures

Title Page Number
Figure 1 – Generation of a split signing key 32

Figure 2 – Overview of two-step code signing 33

List of Tables

Title Page Number
Table 1 – Benchmark Computing Environment 38

Table 2 – Additive Split Performance Measurements 39

Table 3 – Multiplicative Split Performance Measurements 39

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 31

1. Introduction
To prevent unauthorized software from being introduced into a user’s computers or embedded devices,
there are many existing standards that require executable images to include a digital signature. The device
or OS platform validates a code image before it is executed or, in other cases, before it is downloaded and
installed on the device. Some well-known standards of signed code images include Android APK [1],
Microsoft Authenticode [2] and DOCSIS 3.1 cable modem software image signatures [3]. There are many
more standards-based and proprietary code signing formats, some of which are verified in hardware (e.g.,
in the boot ROM).

A common method of code signing is to use a command-line tool together with a private key file. The
process may be initiated by a developer who builds the software or by an automated software build
workflow. For example, Android APK can be signed with Android Studio and binaries for Microsoft
platforms can be signed with SignTool.exe. A chip vendor that supports boot code signature verification
would typically provide a device manufacturer with their own command-line tool for signing boot code
and it may be combined with their linker.

However, there are security concerns with this approach. Code signing keys may be stolen from
development environments. Some well-known incidents involving compromised code signing private
keys include those detailed in [8], [9], and [10]. For this reason, it is good practice to protect code signing
keys in hardware security modules (HSMs), which provide strong protection against disclosure of the
keys. Multiple companies offer commercial code signing tools and online services with hardware-based
protection of private keys.

While protecting the confidentiality of code signing keys addresses one aspect of security, it is also
important to ensure that only authorized individuals can exercise the protected signing key to sign code,
and can do so only according to policy. A code signing service should support permissions and access
control management so that an administrator with appropriate privileges can authorize specific individuals
or teams of individuals to use specific signing keys based on their areas of responsibility.

A software development organization that uses a third-party code signing service is, in doing so, trusting
the signing service not to sign any software using the organization’s signing key without authorization.
Note that the signing service has the technical ability to sign any code using its subscribers’ signing keys;
it is the security controls employed by the service that prevent unauthorized code signing from happening.
Code signing services can themselves be targets of, and can even fall prey to, cyberattacks. This concern
is validated by recent news of high-profile incidents in which providers of security technologies had
themselves become victims of cyberattacks, adversely affecting users of their security products [11], [12],
[13].

This paper introduces a code signing service architecture in which a subscriber’s code signing key is split
into shares controlled separately by the code signing service and the subscriber. If the subscriber’s share
is compromised, the code signing service will continue to protect the other half of the signing key and
will prevent unauthorized code to be signed. At the same time, the code signing service is prevented from
signing code in the subscriber’s name without the subscriber’s participation. If the code signing service
becomes compromised in a cyberattack, the attacker will not have possession of the subscriber’s share of
a code signing key and will still be unable to sign unauthorized software releases.

https://source.android.com/security/apksigning
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=00d39889-0af8-4722-b8a2-0063eeaa460a
https://developer.android.com/studio/publish/app-signing#sign_release
https://docs.microsoft.com/en-us/dotnet/framework/tools/signtool-exe

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 32

2. Solution Outline
We will discuss applying split-key digital signature to enhance the security of code signing using an
example system. In our example system, a trusted code signing service (TCSS) operates a secure
infrastructure and performs code signing for its subscribers. A subscriber in this context may be an
organization, but it could also be an individual. A subscriber owns a public-private key pair, which is used
to sign and authenticate code (data objects) published by the subscriber. A subscriber has one or more
authorized users, who are trusted to exercise the subscriber’s private code signing key to produce code
signed by the subscriber. A trusted third party (TTP) is a party trusted by a subscriber to generate a code
signing key pair for the subscriber. Such trust may be established by technical and non-technical means,
such as contractual guarantees, certification, and audits. A TTP should be viewed as a role—trusted key
generation may not be the only service it provides.

Figure 1 illustrates the process of generating a split signing key in our example system.

In the description that follows, we use the notation 𝐸(𝐾, 𝑚) to denote a data object 𝑚 encrypted using a
key 𝐾. Cryptographic keys are denoted using symbols of the form 𝐾𝑋𝑌𝑍, where the subscript 𝑋𝑌𝑍 is
meant to be suggestive of the ownership or the purpose of the key. Where there is no confusion, we do not
explicitly state which key of a key pair is used in an operation. For example, if K is a public-private key
pair, it is obvious from the context that it is the public key of 𝐾 that is used in computing E(K, m). When
discussing the two shares of a split signing key (more specifically the split private key of the signing key),
we will use the convention that subscript 1 is associated with an authorized user, whereas subscript 2 is
associated with the TCSS. Where it is necessary to distinguish between the public and private keys of a
key pair 𝐾, we will use 𝐾𝑃𝑈𝐵 and 𝐾𝑃𝑅𝐼𝑉 to refer to the public and private keys respectively.

Trusted Third Party
(TTP)

[2] New code
signing key KSIGN
generated

Authorized
User

cert for subscriber’s
archival key

[1] Request for new code signing key

code signing
key certKSIGN encrypted

with subscriber’s
archival key
KARCHIVE

KSIGN,1KSIGN,2
encrypted
using KTCSS

[3] New signing key as multiple components

[4] New signing
key archived

[5] Store (with
protection) for later
code signing use

Subscriber
(Organization)

Figure 1 – Generation of a split signing key

In the key generation process shown in Figure 1, a TTP generates a code signing key 𝐾𝑆𝐼𝐺𝑁 and then
splits it into 2 shares, namely 𝐾𝑆𝐼𝐺𝑁,1 and 𝐾𝑆𝐼𝐺𝑁,2. 𝐾𝑆𝐼𝐺𝑁,2 is encrypted with the (public) key 𝐾𝑇𝐶𝑆𝑆 of the

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 33

TCSS. 𝐾𝑆𝐼𝐺𝑁 is encrypted with the (public) key 𝐾𝐴𝑅𝐶𝐻𝐼𝑉𝐸 of the subscriber organization for secure offline
archival. The creation of this encrypted archival copy is optional, but some subscribers may find such
archiving desirable. The (complete) signing key 𝐾𝑆𝐼𝐺𝑁 is normally kept offline and not available for code
signing, to reduce the security risk of disclosure. 𝐾𝑆𝐼𝐺𝑁,1, 𝐸(𝐾𝑇𝐶𝑆𝑆, 𝐾𝑆𝐼𝐺𝑁,2) and 𝐸(𝐾𝐴𝑅𝐶𝐻𝐼𝑉𝐸, 𝐾𝑆𝐼𝐺𝑁) are
returned to the client used by the authorized user.

For clarity, the keys shown in Figure 1 are color-coded as follows: the complete signing key 𝐾𝑆𝐼𝐺𝑁 is in
blue, the share 𝐾𝑆𝐼𝐺𝑁,1 is in red, the share 𝐾𝑆𝐼𝐺𝑁,2 is in green, and 𝐾𝑇𝐶𝑆𝑆 is in orange.

The TTP also provides the public key 𝐾𝑆𝐼𝐺𝑁
𝑃𝑈𝐵 of the key 𝐾𝑆𝐼𝐺𝑁. A code signature that is generated with

𝐾𝑆𝐼𝐺𝑁 may be validated by anyone using the public key 𝐾𝑆𝐼𝐺𝑁
𝑃𝑈𝐵 . In the figure, KSIGN

PUB is provided in the
form of a digital certificate, as is common practice, although that is not always necessary. It is assumed
that communications between TTP and the client are encrypted and authenticated, for example using
HTTPS.

Trusted Code Signing Service
(TCSS)

[1] User logs onto
TCSS using client

[3] Partly-
computed
signature

Authorized
User

Code Signing
ClientHSM

[2] Code signing request

[4] Partly-computed signature
code to be signed

previously-provisioned
parameters

preprocessed
representation of
code to be signed

[5] Signature computation
is completed with

[6] Signature and
code signing cert
are added to the
code image

Subscriber
(Organization)

Figure 2 – Overview of two-step code signing

Once a client is provisioned with all of the above, the authorized user is able to use an established TCSS
account to initiate code signing. Figure 2 illustrates the following code signing sequence:

1) The authorized user logs into the TCSS using a client application and establishes a secure
authenticated session with the TCSS. This can be done in many different ways and
implementation details are outside the scope of this paper.

2) Using the client, the authorized user submits to the TCSS a code signing request consisting of a
preprocessed representation of the to-be-signed software image and 𝐸(𝐾𝑇𝐶𝑆𝑆, 𝐾𝑆𝐼𝐺𝑁,2), which
was obtained from the TTP before. The preprocessed representation here may contain a
cryptographic digest of the software image, possibly with added padding and randomness.

3) The TCSS unwraps the encrypted 𝐾𝑆𝐼𝐺𝑁,2 inside an HSM. In other words, 𝐸(𝐾𝑇𝐶𝑆𝑆, 𝐾𝑆𝐼𝐺𝑁,2) is
provided to the HSM, which decrypts it with the private key 𝐾𝑇𝐶𝑆𝑆

𝑃𝑅𝐼𝑉 to recover and use 𝐾𝑆𝐼𝐺𝑁,2
inside the HSM’s security perimeter. 𝐾𝑆𝐼𝐺𝑁,2 is then used to generate a partly-computed code
signature.

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 34

4) The partly-computed code signature generated using 𝐾𝑆𝐼𝐺𝑁,2 is returned to the client application.
5) The client application is now able to compute a full code signature using this partly-computed

signature and 𝐾𝑆𝐼𝐺𝑁,1. Details of the underlying mathematics are described in the next section.
6) Finally, the client application combines the generated code signature, the corresponding code

verification certificate, and the code image to create the final signed code image.

An advantage of this technique is that a code signing client can use a secure signing service (the TCSS)
that uses 𝐾𝑆𝐼𝐺𝑁,2 only inside an HSM. The TCSS can provide other security advantages, including fine-
grained access control to different code signing keys and secure audit logging.

At the same time, the subscriber maintains control of its half of the signing key, 𝐾𝑆𝐼𝐺𝑁,1, which is required
to compute a full code signature. This way, TCSS does not have to be totally trusted – it is not able to
sign code in the subscriber’s name (i.e. using the 𝐾𝑆𝐼𝐺𝑁) without the client’s involvement, since the TCSS
has access to neither the complete private key 𝐾𝑆𝐼𝐺𝑁 nor 𝐾𝑆𝐼𝐺𝑁,1.

The following section provides mathematical details for split-key code signing based on the RSA
cryptosystem.

3. Detailed Explanation for RSA-Based Split-Key Signing

3.1. A Quick Review of the Basic RSA Algorithm

RSA-based algorithms are commonly used for public-key encryption and digital signatures. Practical
RSA algorithms (see [7], for example) are based on, but not identical to the “textbook” RSA algorithm.
Because of security considerations, practical RSA algorithms have additional pre- and post-processing
steps. The core of these RSA-based algorithms is the modular exponentiation operation

 RSA(m, e, n) = me mod n, (1)

where 𝑚 is the input to be processed, 𝑛 is a modulus, and 𝑒 is an exponent. The same operation is used
both in the generation and verification of RSA signatures. In RSA key generation, a public-private key
pair is generated together by the key owner, or a party or mechanism trusted by the key owner. An RSA
private key (d, n) consists of a modulus 𝑛 = 𝑝 𝑞, which is a product of two large primes 𝑝 and 𝑞, and an
exponent 𝑑. The factorization of 𝑛 (i.e., the values of 𝑝 and 𝑞) is kept secret by the key owner. The public
key corresponding to (d, n) is (e, n) where 𝑒 is an exponent such that (me)d ≡ m (mod n). More
relevantly computation-wise, 𝑑 and 𝑒 satisfy

 e ⋅ d ≡ 1 (mod ϕ(𝑛)), (2)

where 𝜙(𝑛) is Euler’s totient function. In RSA, where 𝑛 = 𝑝𝑞, ϕ(n) = (p − 1)(𝑞 − 1). In order for (2)
to be satisfied, both 𝑒 and 𝑑 must be coprime with 𝜙(𝑛). The exponents 𝑒 and 𝑑 form a matched pair.
Note that either 𝑒 or 𝑑 can be decided first, with the other derived using equation (2).

In RSA signature schemes, the private key of a key pair is the signing key. The public key is the
verification key.

In practical RSA-based signature algorithms, the to-be-signed data object undergoes some preprocessing
before the RSA operation is applied. The preprocessing typically includes reducing the data object to a

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 35

digest using a cryptographic hash function and combining the digest with deterministic and random
padding. Similarly, in signature verification, postprocessing is performed after the RSA operation. For the
purpose of split-key RSA operations, these pre- and postprocessing steps can be ignored, as they do not
involve the RSA keys, private or public.

3.2. Additive Splitting

In additive splitting of an RSA key, the private exponent 𝑑 used in the signing operation is split into two
shares 𝑑1 and 𝑑2, where

 d1 + d2 ≡ 𝑑 (mod ϕ(𝑛)). (3)

With the split, the RSA operation 𝑚𝑑 mod n can be computed as (𝑚𝑑1 mod 𝑛)(𝑚𝑑2 mod 𝑛) mod  𝑛.
This computation can be carried out in two parts: one by a party with knowledge of 𝑑1 and another by a
party with knowledge of 𝑑2.

3.2.1. Key Generation

To make RSA signing a split-key operation, different shares of the private exponent need to be held by
different entities, so that compromising one of the entities will not give an attacker the ability to forge
signatures. A possible exception to this arrangement is when the private key is archived in heavily
protected and controlled offline storage.

There are different ways in which key generation can be accomplished. If a TTP is available, the TTP can
generate the signing key in two shares, securely deliver the shares to a TCSS and the subscriber
organization’s authorized user, and securely erase its copy afterward. Alternatively, the TCSS can
generate the signing key and securely deliver one share to the subscriber organization’s authorized user.
As in the case of key generation by a TTP, the TCSS securely erases the share of the private key for
which it is not a custodian.

Yet another possibility for key generation is for the subscriber organization to generate the key pair, split
the private key into two shares, upload one share to the TCSS and give custody of the other to an
authorized user. All copies of the complete private key are securely erased afterward.

If the subscriber organization desires to keep a complete copy of the private key in archive, that can be
achieved by encrypting a copy of the private key during key generation using an archive key belonging to
the subscriber organization.

3.2.2. Key Splitting Operation

To split a private exponent 𝑑 into 𝑑1 and 𝑑2 additively, 𝑑1 may be chosen uniformly at random from
{2, … , ϕ(𝑛)– 2}. 𝑑2 can then be determined based on equation (3). Note that 𝑑2 as the additive inverse of
𝑑1 modulo 𝜙(𝑛) always exists. Note also that because 𝑑 is odd but ϕ(n) = (p − 1)(q − 1) is even, one
of d1 or 𝑑2 is even, and therefore not a valid exponent for normal RSA operation. However, that is not a
problem because (𝑑1, 𝑛) and (𝑑2, 𝑛) don’t need to function like normal RSA private keys.

After the private key is split, one share, (𝑑1, 𝑛), is given to the authorized signer. Another share, (𝑑2, 𝑛),
is placed under the control of the TCSS. The TCSS can maintain a database of the private key shares
entrusted to it by its subscribers. Alternatively, 𝑑2 can be encrypted using a key owned by the TCSS. The

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 36

encrypted 𝑑2 is given to the authorized signer along with (𝑑1, 𝑛). When the TCSS needs to perform an
operation with 𝑑2 in response to a signing request from the authorized signer, the encrypted 𝑑2 can be
included in the request.

3.2.3. Signing Operation

To sign a data object 𝑚′, the authorized signer first performs preprocessing on the data to produce 𝑚, a
preprocessed representation of 𝑚′, and sends it to the TCSS.

The TCSS computes a partly-computed signature by performing the RSA operation on the preprocessed
representation using its share of the subscriber’s signing key

 s′ = md2 mod  𝑛, (4)

which the TCSS then sends to the authorized signer.

The authorized signer computes the final signature 𝑠 as

 s = s′ ⋅ (md1 mod n) mod  n. (5)

The authorized signer can verify that the signature is valid by checking that

 se mod n = m. (6)

Variation: As a variation, the RSA operations in the procedure above can be performed in the opposite
order. In that case, the authorized signer computes a partly-computed signature on the preprocessed
representation 𝑚 as

 s′ = md1 mod  n. (7)

The partly-computed signature 𝑠′, together with 𝑚, is then sent to the TCSS, which computes the final
signature 𝑠 as

 s = s′ ⋅ (md2 mod n) mod  n. (8)

The final signature 𝑠 is sent to the authorized signer. To catch unexpected computation errors, the final
signature can be verified by the TCSS or the authorized signer, or both.

3.3. Multiplicative Splitting

In multiplicative splitting of an RSA key, the private exponent 𝑑 used in the signing operation is split into
two shares 𝑑1 and 𝑑2, where

 d1 ⋅ d2 ≡ d (mod ϕ(n)). (9)

With the split, the RSA operation 𝑚𝑑 mod  𝑛 can be computed as (md1 mod n)
 d2 mod  n or

(md2 mod n)
d1 mod n.

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 37

3.3.1. Key Splitting Operation

One way to find a pair of 𝑑1 and 𝑑2 that satisfy equation (9) is to choose a random 𝑑1 from among
{3, … , ϕ(n) − 1} that is coprime with 𝜙(𝑛). In that case, exactly one solution exists for 𝑑2, which can be
computed using the extended Euclidean algorithm.

Using this strategy, sometimes it may take more than one try to find a 𝑑1 that is coprime with 𝜙(𝑛). If the
factors 𝑝 and 𝑞 are chosen to be safe primes (i.e. 𝑝 = 2𝑝′ + 1 and q = 2q′ + 1, for some primes 𝑝′ and
q′), then choosing 𝑑1 at random is almost guaranteed to succeed on the first try.

3.3.2. Signing Operation

As in the case of additive splitting, to sign a data object 𝑚′, the authorized signer first preprocesses 𝑚′ to
produce a preprocessed representation 𝑚 and sends it to the TCSS.

The TCSS computes a partly-computed signature 𝑠′ by performing the RSA operation on the
preprocessed representation using its share of the subscriber’s signing key 𝑑2

 s′ = 𝑚𝑑2 mod  𝑛, (10)

which the TCSS then sends to the authorized signer.

The authorized signer computes the final signature 𝑠 as

 s = (𝑠′)𝑑1 mod  n. (11)

The authorized signer can verify that the signature is valid by checking that

 se mod  n = m. (12)

Variation: As a variation, the RSA operations in the procedure above can be performed in the opposite
order. In that case, the authorized signer computes a partly-computed signature on the preprocessed
representation 𝑚 as

 s′ = 𝑚𝑑1 mod 𝑛. (13)

The partly-computed signature 𝑠′ is then sent to the TCSS, which computes the final signature 𝑠 as

 s = (𝑠′)𝑑2 mod  n. (14)

The final signature 𝑠 is sent to the authorized signer. To catch unexpected computation errors, the final
signature can be verified by the authorized signer.

4. Experimental Results
We performed some experiments to compare standard RSA signature performance (with optimization
based on the Chinese remainder theorem (CRT)) against the performance of a two-step digital signature
approach with a private key that has been split either additively or multiplicatively, as described earlier.
The experiments were executed in the following computing environment:

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 38

Table 1 – Benchmark Computing Environment

Operating system Windows 10 64-bit
CPU Intel® Core™ I7-10610U
RAM 32 GBytes
Cryptographic library C# BouncyCastle

As expected, the overhead of key splitting is insignificant when compared to the time it takes to generate
a random RSA keypair.

On the other hand, there is a noticeable decrease in performance with the two-step digital signatures
because CRT-based optimizations are not available. Exploiting the CRT requires knowledge of the prime
factors of 𝑛 (𝑝 and 𝑞), which would allow the full private exponent to be computed from the public
exponent, defeating the purpose of key splitting. Forgoing CRT-based optimizations, we instead used
BouncyCastle library functions based on Montgomery’s optimization for modular exponentiation.

While this two-step digital signature approach incurs a performance overhead, we consider it acceptable,
especially for signing software images, for at least the following reasons:

1. A software image is often signed after a code build, which often involves orders of magnitude
more computation than the public-key operations in code signing. This also means code signing
is not a very frequently repeated operation for the same software.

2. In code signing, a software image is first reduced to a digest using a cryptographic hash
function. The process is likely to be computationally more expensive than the public-key
operations involved.

3. Code image signing is normally not expected to be a fast real-time operation. An overhead on
the order of 1 second is generally not noticeable.

4. In our proposal, the TCSS’s share of a split private key is protected by and used only inside an
HSM. HSMs generally have hardware acceleration and very good performance for public-key
operations. An increase in execution time of a fast operation by a small multiple is not a big
overhead.

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 39

4.1. Additive Split Benchmarks

Table 2 – Additive Split Performance Measurements

Operation Average execution time / ms
2048-bit 3072-bit 4096-bit

Key split 0.019 0.028 0.040
Standard CRT-based digital signature 30.479 97.410 290.090
Two-step digital signature1 207.100 703.553 2166.583

4.2. Multiplicative Split Benchmarks

Table 3 – Multiplicative Split Performance Measurements

Operation Average execution time / ms
2048-bit 3072-bit 4096-bit

Key split 3.239 6.179 12.678
Number of retries (for the key split) 3.306 3.276 3.561
Standard CRT-based digital signature 30.479 97.410 290.090
Two-step digital signature1 206.855 699.414 2159.088

4.3. Benchmark Results Summary

In our experiments, two-step signature computations were very slightly slower with additive key splitting
than with multiplicative splitting. This is probably because with additive splitting, an additional modular
multiplication is required. The performance difference between the two approaches is insignificant in
practical terms.

In our experiments with multiplicative key splitting, we used a simple generate-and-test strategy for
selecting 𝑑1. On average it took somewhere between 3 to 4 tries to find a 𝑑1 that is relatively prime to
ϕ(𝑛). In any case, both multiplicative split and additive split have negligible performance overheads
when compared to the computation in RSA keypair generation.

Based on our experimental measurements, we do not see a reason to favor one key splitting approach over
the other on performance grounds. Both approaches are viable and are very similar performance-wise.
And while two-step digital signatures result in a factor of 7 increase in total execution time over
conventional CRT-based RSA signatures, that overhead is generally not significant in the context of
software image signing. Note that in the total execution time, roughly half of the computation is normally
performed by the TCSS. Between the TCSS and clients used by authorized users, only the TCSS is a
centralized resource. Therefore, for the TCSS the performance overhead is only about half of what is
suggested by the seven-fold increased execution time.

5. Security Considerations
1) As mentioned in section 4, RSA optimization based on the Chinese remainder theorem cannot be

used in this two-step digital signature approach. Doing so would defeat the goal of having two

1 The measured execution time includes both the computation performed by the TCSS as well as that performed by
the authorized user.

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 40

parties involved in the code signing process, each having access to only one share of the private
key.

2) Key splitting requires a cryptographically strong random number generator to ensure
unpredictability and that all valid choices for the combination of private key shares are nearly
equally likely. The same random number generator which qualifies for key pair generation can
also be utilized for the purpose of key splitting.

3) There are known attacks against RSA based on “small” private exponents, such as the ones in [6]
and [14]. We do not believe they are applicable to the key splitting methods we described. We
note that when a private exponent is split into two shares, they are not always valid RSA
exponents. Even when they are, no corresponding public keys are calculated or published for the
shares. Also, in the methods we described, a pair of private key shares 𝑑1 and 𝑑2 is chosen
uniformly at random from among all valid choices. Only a negligible fraction of such choices
have one or both of 𝑑1 and 𝑑2 is less than, say, half of the bit length of the modulus.

6. Conclusions
We described an architecture for applying split-key digital signature to create a code signing service with
enhanced security and explained the advantages it offers. Two approaches of splitting RSA signing keys
are presented as examples. We anticipated that signature generation using split keys would incur
performance overhead because a commonly employed optimization technique becomes unavailable when
split keys are used. We performed experiments using a software implementation to gauge the
computational overhead. Measurements from the experiments confirmed our expectation that the
overhead is very acceptable in typical code signing usage scenarios.

7. Abbreviations and Definitions

7.1. Abbreviations
CRT Chinese remainder theorem
HSM hardware security module
RSA Rivest-Shamir-Adleman public-key cryptosystem
TCSS trusted code signing service
TTP trusted third party

7.2. Definitions
authorized signer a person authorized by a subscriber (organization) to have possession

of a share of a split signing key belonging to the subscriber and to
request signatures from a trusted code signing service

partly-computed signature an intermediate result computed using one share of a split private
signing key. It is used later in combination with a second share of the
signing key to compute a complete digital signature.

share one of the outputs from splitting a private key. Knowledge of all the
shares of a private key is equivalent to knowledge of the private key.
Knowledge of only one share does not make it feasible to generate a
valid signature.

 © 2021 Society of Cable Telecommunications Engineers, Inc. All rights reserved. 41

subscriber a party that uses a TCSS for two-step code signing. A subscriber may
be an organization but may alternatively be an individual.

8. Bibliography and References
[1] “Application Signing”, Android Open Source Project, undated. [Online]. Available:

https://source.android.com/security/apksigning. [Accessed: November 17, 2021].
[2] Microsoft, “Windows Authenticode Portable Executable Signature Format,” March 21, 2008.

[Online]. Available: http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-
d599bac8184a/authenticode_pe.docx.

[3] CableLabs, “Data-Over-Cable Service Interface Specifications DOCSIS® 3.1 Security
Specification,” CableLabs, CM-SP-SECv3.1-I04-150910, September 10, 2015. [Online].
Available:
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=00d39889
-0af8-4722-b8a2-0063eeaa460a.

[4] B. Lynn, “The Chinese Remainder Theorem”, undated. [Online]. Available:
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html.

[5] Ç. K. Koç, “Montgomery Arithmetic”, in Encyclopedia of Cryptography and Security, 2011 ed.,
Boston, MA: Springer, 2011.

[6] M. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE Trans. Inform. Theory, vol. 36,
pp. 553–558, May 1990.

[7] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1: RSA Cryptography Specifications
Version 2.2”, Internet Engineering Task Force, RFC 8017, November 2016. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8017.txt.

[8] P. Nohe, “Code Signing Compromise Installs Backdoors on Thousands of ASUS Computers,”
thesslstore.com, April 1, 2019. [Online]. Available: https://www.thesslstore.com/blog/code-
signing-compromise-installs-backdoors-on-thousands-of-asus-computers/.

[9] T. Anderson, “HashiCorp reveals exposure of private code-signing key after Codecov
compromise,” The Register, April 26, 2021. [Online]. Available:
https://www.theregister.com/2021/04/26/hashicorp_reveals_exposure_of_private/.

[10] D. Goodin, “Crooks steal security firm’s crypto key, use it to sign malware,” Ars Technica,
February 8, 2013. [Online]. Available: https://arstechnica.com/information-
technology/2013/02/cooks-steal-security-firms-crypto-key-use-it-to-sign-malware/.

[11] Center for Internet Security, “The SolarWinds Cyber-Attack: What You Need to Know,” Center
for Internet Security, March 15, 2021. [Online]. Available:
https://www.cisecurity.org/solarwinds/.

[12] C. Cimpanu, “Nightmare week for security vendors: Now a Trend Micro bug is being exploited
in the wild,” The Record, April 22, 2021. [Online]. Available: https://therecord.media/nightmare-
week-for-security-vendors-now-a-trend-micro-bug-is-being-exploited-in-the-wild/.

[13] T. Seals, “Zoho ManageEngine Password Manager Zero-Day Gets a Fix, Amid Attacks,”
Threatpost, September 9, 2021. [Online]. Available: https://threatpost.com/zoho-password-
manager-zero-day-attack/169303/.

[14] D, Boneh and G. Durfee, “Cryptanalysis of RSA with private key d less than N0.292,” IEEE Trans.
Inform. Theory, vol. 46. pp. 1339–1349, 2000.

https://source.android.com/security/apksigning
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=00d39889-0af8-4722-b8a2-0063eeaa460a
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=00d39889-0af8-4722-b8a2-0063eeaa460a
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html
https://www.rfc-editor.org/rfc/rfc8017.txt
https://www.thesslstore.com/blog/code-signing-compromise-installs-backdoors-on-thousands-of-asus-computers/
https://www.thesslstore.com/blog/code-signing-compromise-installs-backdoors-on-thousands-of-asus-computers/
https://www.theregister.com/2021/04/26/hashicorp_reveals_exposure_of_private/
https://arstechnica.com/information-technology/2013/02/cooks-steal-security-firms-crypto-key-use-it-to-sign-malware/
https://arstechnica.com/information-technology/2013/02/cooks-steal-security-firms-crypto-key-use-it-to-sign-malware/
https://www.cisecurity.org/solarwinds/
https://therecord.media/nightmare-week-for-security-vendors-now-a-trend-micro-bug-is-being-exploited-in-the-wild/
https://therecord.media/nightmare-week-for-security-vendors-now-a-trend-micro-bug-is-being-exploited-in-the-wild/
https://threatpost.com/zoho-password-manager-zero-day-attack/169303/
https://threatpost.com/zoho-password-manager-zero-day-attack/169303/

	SCTE Journal V1N3_Cover
	SCTE Journal V1N3_TOC
	SCTE Journal V1N3A1_Foreward
	SCTE Journal V1N3A2_Deployment Strategies for the Global Coverage of QKD Networks_Wang
	SCTE Journal V1N3A3_Enhanced Digital Signature Service Using Split-key Signatures_So
	SCTE Journal V1N3A4_Multilayered LoRaWAN Networks for Smart Cities_Daoud
	SCTE Journal V1N3A5_Rethinking DDoS_Meinders
	SCTE Journal V1N3A6_Federated Learning for the Cable Industry_Sandholm
	SCTE Journal V1N3A7_Extended Upstream_Condra
	SCTE Journal V1N3A8_AI Powered Customer Care_Mangla
	SCTE Journal V1N3A9_MapiFi Using Wi-Fi Signals to Map Home Devices_Vaizman
	SCTE Journal V1N3A10_Back

