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1. Introduction 
To prevent unauthorized software from being introduced into a user’s computers or embedded devices, 
there are many existing standards that require executable images to include a digital signature. The device 
or OS platform validates a code image before it is executed or, in other cases, before it is downloaded and 
installed on the device. Some well-known standards of signed code images include Android APK [1], 
Microsoft Authenticode [2] and DOCSIS 3.1 cable modem software image signatures [3]. There are many 
more standards-based and proprietary code signing formats, some of which are verified in hardware (e.g., 
in the boot ROM). 

A common method of code signing is to use a command-line tool together with a private key file. The 
process may be initiated by a developer who builds the software or by an automated software build 
workflow. For example, Android APK can be signed with Android Studio and binaries for Microsoft 
platforms can be signed with SignTool.exe. A chip vendor that supports boot code signature verification 
would typically provide a device manufacturer with their own command-line tool for signing boot code 
and it may be combined with their linker. 

However, there are security concerns with this approach. Code signing keys may be stolen from 
development environments. Some well-known incidents involving compromised code signing private 
keys include those detailed in [8], [9], and [10]. For this reason, it is good practice to protect code signing 
keys in hardware security modules (HSMs), which provide strong protection against disclosure of the 
keys. Multiple companies offer commercial code signing tools and online services with hardware-based 
protection of private keys. 

While protecting the confidentiality of code signing keys addresses one aspect of security, it is also 
important to ensure that only authorized individuals can exercise the protected signing key to sign code, 
and can do so only according to policy. A code signing service should support permissions and access 
control management so that an administrator with appropriate privileges can authorize specific individuals 
or teams of individuals to use specific signing keys based on their areas of responsibility. 

A software development organization that uses a third-party code signing service is, in doing so, trusting 
the signing service not to sign any software using the organization’s signing key without authorization. 
Note that the signing service has the technical ability to sign any code using its subscribers’ signing keys; 
it is the security controls employed by the service that prevent unauthorized code signing from happening. 
Code signing services can themselves be targets of, and can even fall prey to, cyberattacks. This concern 
is validated by recent news of high-profile incidents in which providers of security technologies had 
themselves become victims of cyberattacks, adversely affecting users of their security products [11], [12], 
[13]. 

This paper introduces a code signing service architecture in which a subscriber’s code signing key is split 
into shares controlled separately by the code signing service and the subscriber. If the subscriber’s share 
is compromised, the code signing service will continue to protect the other half of the signing key and 
will prevent unauthorized code to be signed. At the same time, the code signing service is prevented from 
signing code in the subscriber’s name without the subscriber’s participation. If the code signing service 
becomes compromised in a cyberattack, the attacker will not have possession of the subscriber’s share of 
a code signing key and will still be unable to sign unauthorized software releases. 

https://source.android.com/security/apksigning
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=00d39889-0af8-4722-b8a2-0063eeaa460a
https://developer.android.com/studio/publish/app-signing#sign_release
https://docs.microsoft.com/en-us/dotnet/framework/tools/signtool-exe
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2. Solution Outline 
We will discuss applying split-key digital signature to enhance the security of code signing using an 
example system. In our example system, a trusted code signing service (TCSS) operates a secure 
infrastructure and performs code signing for its subscribers. A subscriber in this context may be an 
organization, but it could also be an individual. A subscriber owns a public-private key pair, which is used 
to sign and authenticate code (data objects) published by the subscriber. A subscriber has one or more 
authorized users, who are trusted to exercise the subscriber’s private code signing key to produce code 
signed by the subscriber. A trusted third party (TTP) is a party trusted by a subscriber to generate a code 
signing key pair for the subscriber. Such trust may be established by technical and non-technical means, 
such as contractual guarantees, certification, and audits. A TTP should be viewed as a role—trusted key 
generation may not be the only service it provides. 

Figure 1 illustrates the process of generating a split signing key in our example system.  

In the description that follows, we use the notation 𝐸(𝐾, 𝑚) to denote a data object 𝑚 encrypted using a 
key 𝐾. Cryptographic keys are denoted using symbols of the form 𝐾𝑋𝑌𝑍, where the subscript 𝑋𝑌𝑍 is 
meant to be suggestive of the ownership or the purpose of the key. Where there is no confusion, we do not 
explicitly state which key of a key pair is used in an operation. For example, if K is a public-private key 
pair, it is obvious from the context that it is the public key of 𝐾 that is used in computing E(K, m). When 
discussing the two shares of a split signing key (more specifically the split private key of the signing key), 
we will use the convention that subscript 1 is associated with an authorized user, whereas subscript 2 is 
associated with the TCSS. Where it is necessary to distinguish between the public and private keys of a 
key pair 𝐾, we will use 𝐾𝑃𝑈𝐵 and 𝐾𝑃𝑅𝐼𝑉 to refer to the public and private keys respectively. 

Trusted Third Party
(TTP)

[2] New code 
signing key KSIGN
generated

Authorized 
User

cert for subscriber’s 
archival key

[1] Request for new code signing key

code signing 
key certKSIGN encrypted 

with subscriber’s 
archival key 
KARCHIVE

KSIGN,1KSIGN,2
encrypted 
using KTCSS

[3] New signing key as multiple components

[4] New signing 
key archived

[5] Store (with 
protection) for later 
code signing use

Subscriber 
(Organization)

 
Figure 1 – Generation of a split signing key 

In the key generation process shown in Figure 1, a TTP generates a code signing key 𝐾𝑆𝐼𝐺𝑁 and then 
splits it into 2 shares, namely 𝐾𝑆𝐼𝐺𝑁,1 and 𝐾𝑆𝐼𝐺𝑁,2. 𝐾𝑆𝐼𝐺𝑁,2 is encrypted with the (public) key 𝐾𝑇𝐶𝑆𝑆 of the 
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TCSS. 𝐾𝑆𝐼𝐺𝑁 is encrypted with the (public) key 𝐾𝐴𝑅𝐶𝐻𝐼𝑉𝐸 of the subscriber organization for secure offline 
archival. The creation of this encrypted archival copy is optional, but some subscribers may find such 
archiving desirable. The (complete) signing key 𝐾𝑆𝐼𝐺𝑁 is normally kept offline and not available for code 
signing, to reduce the security risk of disclosure. 𝐾𝑆𝐼𝐺𝑁,1, 𝐸(𝐾𝑇𝐶𝑆𝑆, 𝐾𝑆𝐼𝐺𝑁,2) and 𝐸(𝐾𝐴𝑅𝐶𝐻𝐼𝑉𝐸, 𝐾𝑆𝐼𝐺𝑁) are 
returned to the client used by the authorized user.  

For clarity, the keys shown in Figure 1 are color-coded as follows: the complete signing key 𝐾𝑆𝐼𝐺𝑁 is in 
blue, the share 𝐾𝑆𝐼𝐺𝑁,1 is in red, the share 𝐾𝑆𝐼𝐺𝑁,2 is in green, and 𝐾𝑇𝐶𝑆𝑆 is in orange.  

The TTP also provides the public key 𝐾𝑆𝐼𝐺𝑁
𝑃𝑈𝐵  of the key 𝐾𝑆𝐼𝐺𝑁. A code signature that is generated with 

𝐾𝑆𝐼𝐺𝑁 may be validated by anyone using the public key 𝐾𝑆𝐼𝐺𝑁
𝑃𝑈𝐵 . In the figure, KSIGN

PUB  is provided in the 
form of a digital certificate, as is common practice, although that is not always necessary. It is assumed 
that communications between TTP and the client are encrypted and authenticated, for example using 
HTTPS. 
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(TCSS)

[1] User logs onto 
TCSS using client

[3] Partly-
computed 
signature

Authorized 
User

Code Signing 
ClientHSM

[2] Code signing request
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code to be signed
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preprocessed 
representation of 
code to be signed

[5] Signature computation 
is completed with

[6] Signature and 
code signing cert 
are added to the 
code image
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(Organization)

 
Figure 2 – Overview of two-step code signing 

Once a client is provisioned with all of the above, the authorized user is able to use an established TCSS 
account to initiate code signing. Figure 2 illustrates the following code signing sequence: 

1) The authorized user logs into the TCSS using a client application and establishes a secure 
authenticated session with the TCSS. This can be done in many different ways and 
implementation details are outside the scope of this paper. 

2) Using the client, the authorized user submits to the TCSS a code signing request consisting of a 
preprocessed representation of the to-be-signed software image and 𝐸(𝐾𝑇𝐶𝑆𝑆, 𝐾𝑆𝐼𝐺𝑁,2), which 
was obtained from the TTP before. The preprocessed representation here may contain a 
cryptographic digest of the software image, possibly with added padding and randomness.  

3) The TCSS unwraps the encrypted 𝐾𝑆𝐼𝐺𝑁,2 inside an HSM. In other words, 𝐸(𝐾𝑇𝐶𝑆𝑆, 𝐾𝑆𝐼𝐺𝑁,2) is 
provided to the HSM, which decrypts it with the private key 𝐾𝑇𝐶𝑆𝑆

𝑃𝑅𝐼𝑉 to recover and use 𝐾𝑆𝐼𝐺𝑁,2 
inside the HSM’s security perimeter. 𝐾𝑆𝐼𝐺𝑁,2 is then used to generate a partly-computed code 
signature. 
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4) The partly-computed code signature generated using 𝐾𝑆𝐼𝐺𝑁,2 is returned to the client application. 
5) The client application is now able to compute a full code signature using this partly-computed 

signature and 𝐾𝑆𝐼𝐺𝑁,1. Details of the underlying mathematics are described in the next section. 
6) Finally, the client application combines the generated code signature, the corresponding code 

verification certificate, and the code image to create the final signed code image. 

An advantage of this technique is that a code signing client can use a secure signing service (the TCSS) 
that uses 𝐾𝑆𝐼𝐺𝑁,2 only inside an HSM. The TCSS can provide other security advantages, including fine-
grained access control to different code signing keys and secure audit logging. 

At the same time, the subscriber maintains control of its half of the signing key, 𝐾𝑆𝐼𝐺𝑁,1, which is required 
to compute a full code signature. This way, TCSS does not have to be totally trusted – it is not able to 
sign code in the subscriber’s name (i.e. using the 𝐾𝑆𝐼𝐺𝑁) without the client’s involvement, since the TCSS 
has access to neither the complete private key 𝐾𝑆𝐼𝐺𝑁 nor 𝐾𝑆𝐼𝐺𝑁,1. 

The following section provides mathematical details for split-key code signing based on the RSA 
cryptosystem. 

3. Detailed Explanation for RSA-Based Split-Key Signing 

3.1. A Quick Review of the Basic RSA Algorithm 

RSA-based algorithms are commonly used for public-key encryption and digital signatures. Practical 
RSA algorithms (see [7], for example) are based on, but not identical to the “textbook” RSA algorithm. 
Because of security considerations, practical RSA algorithms have additional pre- and post-processing 
steps. The core of these RSA-based algorithms is the modular exponentiation operation 

 RSA(m, e, n) = me mod n, (1) 

where 𝑚 is the input to be processed, 𝑛 is a modulus, and 𝑒 is an exponent. The same operation is used 
both in the generation and verification of RSA signatures. In RSA key generation, a public-private key 
pair is generated together by the key owner, or a party or mechanism trusted by the key owner. An RSA 
private key (d, n) consists of a modulus 𝑛 = 𝑝 𝑞, which is a product of two large primes 𝑝 and 𝑞, and an 
exponent 𝑑. The factorization of 𝑛 (i.e., the values of 𝑝 and 𝑞) is kept secret by the key owner. The public 
key corresponding to (d, n) is (e, n) where 𝑒 is an exponent such that (me)d ≡ m (mod n). More 
relevantly computation-wise, 𝑑 and 𝑒 satisfy  

 e ⋅ d ≡ 1 (mod ϕ(𝑛)), (2) 

where 𝜙(𝑛) is Euler’s totient function. In RSA, where 𝑛 = 𝑝𝑞, ϕ(n) = (p − 1)(𝑞 − 1). In order for (2) 
to be satisfied, both 𝑒 and 𝑑 must be coprime with 𝜙(𝑛). The exponents 𝑒 and 𝑑 form a matched pair. 
Note that either 𝑒 or 𝑑 can be decided first, with the other derived using equation (2). 

In RSA signature schemes, the private key of a key pair is the signing key. The public key is the 
verification key. 

In practical RSA-based signature algorithms, the to-be-signed data object undergoes some preprocessing 
before the RSA operation is applied. The preprocessing typically includes reducing the data object to a 
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digest using a cryptographic hash function and combining the digest with deterministic and random 
padding. Similarly, in signature verification, postprocessing is performed after the RSA operation. For the 
purpose of split-key RSA operations, these pre- and postprocessing steps can be ignored, as they do not 
involve the RSA keys, private or public. 

3.2. Additive Splitting 

In additive splitting of an RSA key, the private exponent 𝑑 used in the signing operation is split into two 
shares 𝑑1 and 𝑑2, where  

 d1 + d2 ≡ 𝑑 (mod ϕ(𝑛)). (3) 

With the split, the RSA operation 𝑚𝑑 mod n can be computed as (𝑚𝑑1 mod 𝑛)(𝑚𝑑2 mod 𝑛) mod  𝑛. 
This computation can be carried out in two parts: one by a party with knowledge of 𝑑1 and another by a 
party with knowledge of 𝑑2. 

3.2.1. Key Generation 

To make RSA signing a split-key operation, different shares of the private exponent need to be held by 
different entities, so that compromising one of the entities will not give an attacker the ability to forge 
signatures. A possible exception to this arrangement is when the private key is archived in heavily 
protected and controlled offline storage. 

There are different ways in which key generation can be accomplished. If a TTP is available, the TTP can 
generate the signing key in two shares, securely deliver the shares to a TCSS and the subscriber 
organization’s authorized user, and securely erase its copy afterward. Alternatively, the TCSS can 
generate the signing key and securely deliver one share to the subscriber organization’s authorized user. 
As in the case of key generation by a TTP, the TCSS securely erases the share of the private key for 
which it is not a custodian. 

Yet another possibility for key generation is for the subscriber organization to generate the key pair, split 
the private key into two shares, upload one share to the TCSS and give custody of the other to an 
authorized user. All copies of the complete private key are securely erased afterward. 

If the subscriber organization desires to keep a complete copy of the private key in archive, that can be 
achieved by encrypting a copy of the private key during key generation using an archive key belonging to 
the subscriber organization.  

3.2.2. Key Splitting Operation 

To split a private exponent 𝑑 into 𝑑1 and 𝑑2 additively, 𝑑1 may be chosen uniformly at random from 
{2, … , ϕ(𝑛)– 2}. 𝑑2 can then be determined based on equation (3). Note that 𝑑2 as the additive inverse of 
𝑑1 modulo 𝜙(𝑛) always exists. Note also that because 𝑑 is odd but ϕ(n) = (p − 1)(q − 1) is even, one 
of d1 or 𝑑2 is even, and therefore not a valid exponent for normal RSA operation. However, that is not a 
problem because (𝑑1, 𝑛) and (𝑑2, 𝑛) don’t need to function like normal RSA private keys.  

After the private key is split, one share, (𝑑1, 𝑛), is given to the authorized signer. Another share, (𝑑2, 𝑛), 
is placed under the control of the TCSS. The TCSS can maintain a database of the private key shares 
entrusted to it by its subscribers. Alternatively, 𝑑2 can be encrypted using a key owned by the TCSS. The 
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encrypted 𝑑2 is given to the authorized signer along with (𝑑1, 𝑛). When the TCSS needs to perform an 
operation with 𝑑2 in response to a signing request from the authorized signer, the encrypted 𝑑2 can be 
included in the request. 

3.2.3. Signing Operation 

To sign a data object 𝑚′, the authorized signer first performs preprocessing on the data to produce 𝑚, a 
preprocessed representation of 𝑚′, and sends it to the TCSS. 

The TCSS computes a partly-computed signature by performing the RSA operation on the preprocessed 
representation using its share of the subscriber’s signing key 

 s′ = md2 mod  𝑛, (4) 

which the TCSS then sends to the authorized signer. 

The authorized signer computes the final signature 𝑠 as 

 s = s′ ⋅ (md1 mod n) mod  n. (5) 

The authorized signer can verify that the signature is valid by checking that 

 se mod n = m. (6) 

Variation: As a variation, the RSA operations in the procedure above can be performed in the opposite 
order. In that case, the authorized signer computes a partly-computed signature on the preprocessed 
representation 𝑚 as 

 s′ = md1 mod  n. (7) 

The partly-computed signature 𝑠′, together with 𝑚, is then sent to the TCSS, which computes the final 
signature 𝑠 as 

 s = s′ ⋅ (md2 mod n) mod  n. (8) 

The final signature 𝑠 is sent to the authorized signer. To catch unexpected computation errors, the final 
signature can be verified by the TCSS or the authorized signer, or both. 

3.3. Multiplicative Splitting 

In multiplicative splitting of an RSA key, the private exponent 𝑑 used in the signing operation is split into 
two shares 𝑑1 and 𝑑2, where  

 d1 ⋅ d2 ≡ d (mod ϕ(n)). (9) 

With the split, the RSA operation 𝑚𝑑 mod  𝑛 can be computed as (md1 mod n)
 d2 mod  n or 

(md2 mod n)
d1 mod n. 
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3.3.1. Key Splitting Operation 

One way to find a pair of 𝑑1 and 𝑑2 that satisfy equation (9) is to choose a random 𝑑1 from among 
{3, … , ϕ(n) − 1} that is coprime with 𝜙(𝑛). In that case, exactly one solution exists for 𝑑2, which can be 
computed using the extended Euclidean algorithm. 

Using this strategy, sometimes it may take more than one try to find a 𝑑1 that is coprime with 𝜙(𝑛). If the 
factors 𝑝 and 𝑞 are chosen to be safe primes (i.e. 𝑝 = 2𝑝′ + 1 and q = 2q′ + 1, for some primes 𝑝′ and 
q′), then choosing 𝑑1 at random is almost guaranteed to succeed on the first try. 

3.3.2. Signing Operation 

As in the case of additive splitting, to sign a data object 𝑚′, the authorized signer first preprocesses 𝑚′ to 
produce a preprocessed representation 𝑚 and sends it to the TCSS. 

The TCSS computes a partly-computed signature 𝑠′ by performing the RSA operation on the 
preprocessed representation using its share of the subscriber’s signing key 𝑑2 

 s′ = 𝑚𝑑2 mod  𝑛, (10) 

which the TCSS then sends to the authorized signer. 

The authorized signer computes the final signature 𝑠 as 

 s = (𝑠′)𝑑1 mod  n. (11) 

The authorized signer can verify that the signature is valid by checking that 

 se mod  n = m. (12) 

Variation: As a variation, the RSA operations in the procedure above can be performed in the opposite 
order. In that case, the authorized signer computes a partly-computed signature on the preprocessed 
representation 𝑚 as 

 s′ = 𝑚𝑑1 mod 𝑛. (13) 

The partly-computed signature 𝑠′ is then sent to the TCSS, which computes the final signature 𝑠 as 

 s = (𝑠′)𝑑2 mod  n. (14) 

The final signature 𝑠 is sent to the authorized signer. To catch unexpected computation errors, the final 
signature can be verified by the authorized signer. 

4. Experimental Results 
We performed some experiments to compare standard RSA signature performance (with optimization 
based on the Chinese remainder theorem (CRT)) against the performance of a two-step digital signature 
approach with a private key that has been split either additively or multiplicatively, as described earlier.  
The experiments were executed in the following computing environment: 
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Table 1 – Benchmark Computing Environment 

Operating system Windows 10 64-bit 
CPU Intel® Core™ I7-10610U 
RAM 32 GBytes 
Cryptographic library C# BouncyCastle 

As expected, the overhead of key splitting is insignificant when compared to the time it takes to generate 
a random RSA keypair. 

On the other hand, there is a noticeable decrease in performance with the two-step digital signatures 
because CRT-based optimizations are not available. Exploiting the CRT requires knowledge of the prime 
factors of 𝑛 (𝑝 and 𝑞), which would allow the full private exponent to be computed from the public 
exponent, defeating the purpose of key splitting. Forgoing CRT-based optimizations, we instead used 
BouncyCastle library functions based on Montgomery’s optimization for modular exponentiation. 

While this two-step digital signature approach incurs a performance overhead, we consider it acceptable, 
especially for signing software images, for at least the following reasons: 

1. A software image is often signed after a code build, which often involves orders of magnitude 
more computation than the public-key operations in code signing. This also means code signing 
is not a very frequently repeated operation for the same software. 

2. In code signing, a software image is first reduced to a digest using a cryptographic hash 
function. The process is likely to be computationally more expensive than the public-key 
operations involved. 

3. Code image signing is normally not expected to be a fast real-time operation. An overhead on 
the order of 1 second is generally not noticeable. 

4. In our proposal, the TCSS’s share of a split private key is protected by and used only inside an 
HSM. HSMs generally have hardware acceleration and very good performance for public-key 
operations. An increase in execution time of a fast operation by a small multiple is not a big 
overhead.  
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4.1. Additive Split Benchmarks 

Table 2 – Additive Split Performance Measurements 

Operation Average execution time / ms 
2048-bit 3072-bit 4096-bit 

Key split 0.019 0.028 0.040 
Standard CRT-based digital signature 30.479 97.410 290.090 
Two-step digital signature1 207.100 703.553 2166.583 

4.2. Multiplicative Split Benchmarks 

Table 3 – Multiplicative Split Performance Measurements 

Operation Average execution time / ms 
2048-bit 3072-bit 4096-bit 

Key split 3.239 6.179 12.678 
Number of retries (for the key split) 3.306 3.276 3.561 
Standard CRT-based digital signature 30.479 97.410 290.090 
Two-step digital signature1 206.855 699.414 2159.088 

4.3. Benchmark Results Summary 

In our experiments, two-step signature computations were very slightly slower with additive key splitting 
than with multiplicative splitting. This is probably because with additive splitting, an additional modular 
multiplication is required. The performance difference between the two approaches is insignificant in 
practical terms. 

In our experiments with multiplicative key splitting, we used a simple generate-and-test strategy for 
selecting 𝑑1. On average it took somewhere between 3 to 4 tries to find a 𝑑1 that is relatively prime to 
ϕ(𝑛). In any case, both multiplicative split and additive split have negligible performance overheads 
when compared to the computation in RSA keypair generation.  

Based on our experimental measurements, we do not see a reason to favor one key splitting approach over 
the other on performance grounds. Both approaches are viable and are very similar performance-wise. 
And while two-step digital signatures result in a factor of 7 increase in total execution time over 
conventional CRT-based RSA signatures, that overhead is generally not significant in the context of 
software image signing. Note that in the total execution time, roughly half of the computation is normally 
performed by the TCSS. Between the TCSS and clients used by authorized users, only the TCSS is a 
centralized resource. Therefore, for the TCSS the performance overhead is only about half of what is 
suggested by the seven-fold increased execution time. 

5. Security Considerations 
1) As mentioned in section 4, RSA optimization based on the Chinese remainder theorem cannot be 

used in this two-step digital signature approach. Doing so would defeat the goal of having two 

 
1 The measured execution time includes both the computation performed by the TCSS as well as that performed by 
the authorized user. 
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parties involved in the code signing process, each having access to only one share of the private 
key. 

2) Key splitting requires a cryptographically strong random number generator to ensure 
unpredictability and that all valid choices for the combination of private key shares are nearly 
equally likely. The same random number generator which qualifies for key pair generation can 
also be utilized for the purpose of key splitting. 

3) There are known attacks against RSA based on “small” private exponents, such as the ones in [6] 
and [14]. We do not believe they are applicable to the key splitting methods we described. We 
note that when a private exponent is split into two shares, they are not always valid RSA 
exponents. Even when they are, no corresponding public keys are calculated or published for the 
shares. Also, in the methods we described, a pair of private key shares 𝑑1 and 𝑑2 is chosen 
uniformly at random from among all valid choices. Only a negligible fraction of such choices 
have one or both of 𝑑1 and 𝑑2 is less than, say, half of the bit length of the modulus. 
 

6. Conclusions 
We described an architecture for applying split-key digital signature to create a code signing service with 
enhanced security and explained the advantages it offers. Two approaches of splitting RSA signing keys 
are presented as examples. We anticipated that signature generation using split keys would incur 
performance overhead because a commonly employed optimization technique becomes unavailable when 
split keys are used. We performed experiments using a software implementation to gauge the 
computational overhead. Measurements from the experiments confirmed our expectation that the 
overhead is very acceptable in typical code signing usage scenarios. 

7. Abbreviations and Definitions 

7.1. Abbreviations 
CRT Chinese remainder theorem 
HSM hardware security module 
RSA Rivest-Shamir-Adleman public-key cryptosystem 
TCSS trusted code signing service 
TTP trusted third party 

7.2. Definitions 
authorized signer a person authorized by a subscriber (organization) to have possession 

of a share of a split signing key belonging to the subscriber and to 
request signatures from a trusted code signing service  

partly-computed signature an intermediate result computed using one share of a split private 
signing key. It is used later in combination with a second share of the 
signing key to compute a complete digital signature. 

share one of the outputs from splitting a private key. Knowledge of all the 
shares of a private key is equivalent to knowledge of the private key. 
Knowledge of only one share does not make it feasible to generate a 
valid signature. 
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subscriber a party that uses a TCSS for two-step code signing. A subscriber may 
be an organization but may alternatively be an individual.  
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